Mechanical Reasoning - Test 2

40 Questions

Answer as many questions as you can in 30 minutes. Circle the letter below the question which corresponds to the correct answer. You are advised to use a calculator.

1) How much weight is required to balance the lever?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
15 Kg	5 Kg	10 Kg	7.5 Kg	20 Kg

$\begin{array}{lllll}\text { A } & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E}\end{array}$
2) How far from the fulcrum does the 100 lb weight need to be to just tip the lever?

A	B	C	D	E
4 ft 8 inches	4 ft 6 inches	5 ft	4 ft 10 inches	4 ft

[^0]3) How much weight is required to just tip the lever?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
115 lbs	112 lbs	118 lbs	116 lbs	117 lbs

$\begin{array}{lllll}\text { A } & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E}\end{array}$

Mechanical Reasoning - Test 2

4) How much weight is required to just tip the lever?

\mathbf{A}	B	C	\mathbf{D}	E
22 lbs	25 lbs	28 lbs	40 lbs	35 lbs

A B
C D E
5) How far from the fulcrum does the 55 lb weight need to be to just tip the lever?

A	B	C	D	E
6 ft	9 ft 6 inches	10 ft 6 inches	8 ft 6 inches	10 ft

A $\quad \mathbf{B} \quad \mathbf{C} \quad \mathbf{D} \quad \mathbf{E}$
6) Approximately how much force is needed to lift the weight?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
9 lbs	8 lbs	6 lbs	4 lbs	16 lbs

A
B C
D E

Mechanical Reasoning - Test 2

7) Approximately how much force is needed to lift the weight?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
75 lbs	35.5 lbs	25 lbs	50 lbs	15 lbs

A $\quad \mathbf{B} \quad \mathbf{C} \quad \mathbf{D} \quad \mathbf{E}$
8) Approximately how much force is needed to lift the weight?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
30 lbs	45 lbs	60 lbs	90 lbs	120 lbs

$\begin{array}{lllll}\text { A } & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E}\end{array}$
9) Approximately how much force is needed to lift the weight?

A	B	C	\mathbf{D}	E
15 lbs	30 lbs	45 lbs	60 lbs	90 lbs

A $\quad \mathbf{B} \quad \mathbf{C} \quad \mathbf{D} \quad \mathbf{E}$

Mechanical Reasoning - Test 2

10) Approximately how much force is needed to lift the weight?

A	B	C	D	E
30 lbs	36 lbs	45 lbs	60 lbs	90 lbs

$\begin{array}{lllll}\text { A } & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E}\end{array}$
11) If gear X turns clockwise at a constant speed of 10 rpm. How does gear Y turn?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
anti c/w 10 rpm	c/w 10 rpm	$\mathrm{c} / \mathrm{w} 5 \mathrm{rpm}$	anti c/w 5 rpm	$\mathrm{c} / \mathrm{w} 20 \mathrm{rpm}$

$\begin{array}{lllll}\text { A } & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E}\end{array}$
12) If gear X turns clockwise at a constant speed of 10 rpm. How does gear Y turn?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
anti c/w 10 rpm	c/w 10 rpm	c/w 5 rpm	anti c/w 5 rpm	anti c/w 20 rpm

A B
B C
D E

Mechanical Reasoning - Test 2

13) If gear X turns clockwise at a constant speed of 10 rpm. How does gear Y turn?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
anti c/w 10 rpm	c/w 10 rpm	$\mathrm{c} / \mathrm{w} 20 \mathrm{rpm}$	anti c/w 5 rpm	anti c/w 20 rpm

A $\quad \mathbf{B} \quad \mathbf{C} \quad \mathbf{D} \quad \mathbf{E}$
14) If gear X turns clockwise at a constant speed of 10 rpm. How does gear Y turn?

A	B	C	D	E
anti c/w 10 rpm	$\mathrm{c} / \mathrm{w} 10 \mathrm{rpm}$	$\mathrm{c} / \mathrm{w} 5 \mathrm{rpm}$	anti c/w 5 rpm	$\mathrm{c} / \mathrm{w} 20 \mathrm{rpm}$

A $\quad \mathbf{B} \quad \mathbf{C} \quad \mathbf{D} \quad \mathbf{E}$

15) If bar Y moves left a constant speed. How does bar X move?

A	B	C	D	E
Left, Faster	Right, Same	Left, Slower	Left, Same	Right, Slower

$\begin{array}{lllll}\text { A } & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E}\end{array}$

Mechanical Reasoning - Test 2

16) If drive wheel X rotates clockwise at a speed of 10 rpm . How does wheel Y turn?

A	B	C	D	E
anti c/w faster	c/w slower	c/w faster	anti c/w slower	anti c/w same

A $\quad \mathbf{B} \quad \mathbf{C} \quad \mathbf{D} \quad \mathbf{E}$
17) If drive wheel X rotates clockwise at a speed of 10 rpm . How does wheel Y turn?

A	B	C	D	E
anti c/w faster	c/w slower	c/w faster	anti c/w slower	c/w same

A $\quad \mathbf{B} \quad \mathbf{C} \quad \mathbf{D} \quad \mathbf{E}$
18) If drive wheel X rotates clockwise at a speed of 10 rpm . How does wheel Y turn?

A	B	C	D	E
anti c/w faster	c/w slower	c/w faster	anti c/w slower	c/w same

$\begin{array}{lllll}\text { A } & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E}\end{array}$

Mechanical Reasoning - Test 2

19) If drive wheel X rotates clockwise at a speed of 10 rpm. How does wheel Y turn?

A	B	C	D	E
anti c/w faster	c/w slower	c/w faster	anti c/w slower	c/w same

$$
\begin{array}{lllll}
\text { A } & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E}
\end{array}
$$

20) A force of 15 Kg compresses the parallel in series 10 cm . What will be the total distance that the springs in series are compressed?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
10 cms	5 cms	20 cms	7.5 cms	15 cms

[^1]21) A force of 10 Kg compresses the two springs in parallel 10 cm . How much force is required to compresses three springs in parallel 10 cm ?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
5 Kg	10 Kg	7.5 Kg	12 Kg	15 Kg

$\begin{array}{lllll}\text { A } & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E}\end{array}$

Mechanical Reasoning - Test 2

22) If bulb 1 is removed, how many bulbs will light up when the switch is closed?

A	B	C	D	E
None	One	Two	Three	Four

A $\quad \mathbf{B} \quad \mathbf{C} \quad \mathbf{D} \quad \mathbf{E}$
23) How many bulbs will light when switches $1,2,3$ and 4 are closed?

A	B	C	D	E
None	One	Two	Three	Four

A $\quad \mathbf{B} \quad \mathbf{C} \quad \mathbf{D} \quad \mathbf{E}$

Mechanical Reasoning - Test 2

24) Which is the most suitable tool for general carpentry?

A	B	C	D	E
None	1	2	3	4

$\begin{array}{lllll}\text { A } & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E}\end{array}$
25) Which is the most suitable tool for general metalwork?

A	B	C	D	E
None	1	2	3	4

$\begin{array}{lllll}\text { A } & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E}\end{array}$

26) Which tool or combination of tools would be most useful for fitting an entertainment system to a vehicle?

A	B	C	D	E
$1 \& 9$	6	8	$2 \& 8$	9

$$
\begin{array}{lllll}
\text { A } & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E}
\end{array}
$$

27) Which tool or combination of tools would be most useful for constructing a mild steel frame?

A	B	C	D	\mathbf{E}
$3 \& 4$	9	$1 \& 9$	$2 \& 8$	6

$$
\begin{array}{lllll}
\mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E}
\end{array}
$$

28) Which tool or combination of tools would be most useful for masonry work?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
3	6	4	7	2

$$
\begin{array}{lllll}
\mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E}
\end{array}
$$

29) Which tool or combination of tools would be most useful for fitting a wooden door?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
$3,5 \& 7$	$1 \& 9$	$2,3 \& 4$	$4,6 \& 7$	$4 \& 6$

[^2]

The sketch shows the floor plan of a kitchen. The kitchen units and worktop project 2' 6 " from the wall at a height of 36 ". The window is 7 feet wide and 4 feet high - it is flush with the level of the worktop. The ceiling is 8 feet high. The specification requires 6 " 6 " decorative tiles to be fitted above the worktop on three sides to a height of 24 ".
30) Allowing for 15% wastage, approximately how many tiles should be ordered?

A	B	C	D	E
82	74	64	70	80

A $\quad \mathbf{B} \quad \mathbf{C} \quad \mathbf{D} \quad \mathbf{E}$
31) The door measures 7' $x 2^{\prime} 66^{\prime \prime}$. Calculate the remaining wall area in square feet (i.e. the area that has not been tiled)

A	B	C	D	E
268	144	306	221	180

A $\quad \mathbf{B} \quad \mathbf{C} \quad \mathbf{D} \quad \mathbf{E}$
32) The walls and the ceiling are to be painted. How many square yards of paint will be required?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
24	36	30	42	26

$\begin{array}{lllll}\text { A } & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E}\end{array}$

Mechanical Reasoning - Test 2

The sketch above shows a component which is stamped out of sheet steel. These components are stamped out of a continuous steel coil with a width of 75 cms . The stamping process requires a gap of 25 mm between each component. The steel coil is supplied in lengths of 30 meters costing $\$ 200$.
33) What is the approximate area of the component in square centimetres?

A	B	C	D	E
4688	4470	4562	4860	4328

A \quad B \quad C $\quad \mathbf{D} \quad \mathbf{E}$
34) What is the approximate percentage of steel wasted?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
42%	35%	44%	37%	39%

A $\quad \mathbf{B} \quad \mathbf{C} \quad \mathbf{D} \quad \mathbf{E}$
35) Assuming minimal wastage, how many components can be produced from each 30 meter coil?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
30	29	32	37	34

A $\quad \mathbf{B} \quad \mathbf{C} \quad \mathbf{D} \quad \mathbf{E}$
36) What is the approximate cost of a component if the scrap is sold at 50% of cost?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
$\$ 4.40$	$\$ 5.80$	$\$ 5.66$	$\$ 5.40$	$\$ 6.66$

[^3]
Mechanical Reasoning - Test 2

The sketch shows a component made from titanium. The density of titanium is 4.5 g per cubic cm . For shipping purposes the components are packed into individual boxes before being packed into shipping crates measuring $0.24 \mathrm{~m} \times 0.3 \mathrm{~m} \times 0.4 \mathrm{~m}$. Shipping crates are packed on pallets to a maximum weight of 800 Kg .
37) What is the approximate total volume of the component in cubic centimetres?

\mathbf{A}	B	C	D	E
800	750	700	680	775

A \quad B \quad C $\quad \mathbf{D} \quad \mathbf{E}$
38) What is the approximate weight of the component?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
3.8 Kg	4.2 Kg	3.6 Kg	38 Kg	17 Kg

A $\quad \mathbf{B} \quad \mathbf{C} \quad \mathbf{D} \quad \mathbf{E}$
39) How many components can be fitted into a shipping crate?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
22	26	18	24	20

A
B C
D E
40) How many shipping crates can be fitted onto a palette?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
6	9	8	11	7

A
C
D E

Answers

1)	C	16)	B	31)	D
2)	D	17)	E	32)	B
3)	E	18)	E	33)	E
4)	A	19)	C	34)	C
5)	B	20)	C	35)	B
6)	B	21)	E	36)	D
7)	C	22)	C	37)	A
8)	B	23)	E	38)	C
9)	B	24)	B	39)	D
10)	B	25)	E	40)	B
11)	A	26)	A		
12)	E	27)	D		
13)	C	28)	C		
14)	B	29)	A		
15)	D	30)	B		

[^0]: A
 B \quad C \quad D \quad E

[^1]: A $\quad \mathbf{B} \quad \mathbf{C} \quad \mathbf{D} \quad \mathbf{E}$

[^2]: A $\quad \mathbf{B} \quad \mathbf{C} \quad \mathbf{D} \quad \mathbf{E}$

[^3]: A $\quad \mathbf{B} \quad \mathbf{C} \quad \mathbf{D} \quad \mathbf{E}$

